دانشکده علوم پایه دانشگاه مراغه - علی شکری

نام استاد علی شکری
گروه آموزشی ریاضی
درجه علمی دانشیار
تحصیلات دکترا
رشته تحصیلی ریاضی کاربردی- آنالیز عددی
محل تحصیل دانشگاه تبریز
خط داخلی
موبایل
صفحه اصلی https://science.maragheh.ac.ir/Staff/ashokri
آدرس پست الکترونیکی

تماس الکترونیکی

درباره


سوابق تحصیلی


تحصيلات عاليه
سال اخذ مدرک شهر محل تحصيل كشور محل تحصيل دانشگاه محل تحصيل مدرک تحصیلی گرایش رشته تحصيلي
1389 تبریز ایران دانشگاه تبریز دکتری آنالیز عددی - حل عددی ODE ریاضی کاربردی

سوابق تدریس


سابقه ارائه خدمات آموزشي
سال عنوان درس مقطع تحصیلی موسسه محل تدريس
  تحقيق در عمليات 1 و 2 کارشناسی دانشگاه مراغه
  معادلات ديفرانسيل کارشناسی دانشگاه مراغه
  رياضي عمومي کارشناسی دانشگاه مراغه
  ساختمان داد ها کارشناسی دانشگاه آزاد اسلامي
  برنامه نويسي پيشرفته کارشناسی دانشگاه آزاد اسلامي
  آمار و احتمالات 1 و 2 کارشناسی دانشگاه پيام نور
  آناليز عددي کارشناسی دانشگاه آزاد اسلامي
  تحقیق در عملیات پیشرفته کارشناسی ارشد دانشگاه مراغه

زمینه های پژوهشی


حل عددی معادلات دیفرانسیل معمولی و جزئی
بهینه سازی

خلاصه مقالات


  1. Shokri, A., A new eight-order symmetric two-step multiderivative method for the numerical solution of second order IVPs with oscillating solutions, Numer. Algor., Published online. (ISI)
  2. Shokri, A., Saadat, H. and Khodadadi, A., A new high order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation, Iranian J. Math. Sci. Infor., Accepted Paper. (ISC)
  3. Shokri, A., M. Tahmourasi, A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and related IVPs with oscillating solutions, Iranian J. Math. Chem., 8(2), 2017, 137-159. (ISI-ISC)
  4. Shokri, A., A new high order implicit four-step methods with vanished phase-lag and some of its derivatives for the numerical solution of the radial Schrödinger equation, J. Mod. Methods Numer. Math., 8(1-2), 2017, 1–16.
  5. Shokri, A., Saadat, H., P-stability, TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrödinger equation, Bull. Iranian Math. Soc., 42(3), 2016, 687-706. (ISI-ISC)
  6. Shokri, A., The multistep multiderivative methods for the numerical solution of first order initial value problems, TWMS J. Pure Appl. Math., 7(1), 88-97, 2016. (ISI-ISC)
  7. Shokri, A., Heydari, M., Shokri, A.A., Rahimi, A. and Pashaie, F., A sandwich theorem on the -like functions involving operator, Acta Univ. Apulensis Math. Inform, 43, 65-77, 2015.
  8. Shokri, A., An explicit trigonometrically fitted ten-step method with phase-lag of order infinity for the numerical solution of radial Schrödinger equation, Appl. Comput. Math., 14(1), 63-74, 2015. (ISI)
  9. Shokri, A., The symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems, Bull. Iranian Math. Soc., 41 (1), 201-215, 2015. (ISI-ISC)
  10. Shokri, A., Saadat, H., High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems, Numer. Algor., 68 (1), 1-18, 2015. (ISI)
  11. Shokri, A., Shokri, A.A., Mostafavi, Sh. and Saadat, H., Trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems, Iranian J. Math. Chem., 6 (2), 145-161, 2015. (ISI-ISC)
  12. Shokri, A., Saadat, H., Trigonometrically fitted high-order predictor-corrector method with phase-lag of order infinity for the numerical solution of radial Schrödinger equation, J. Math. Chem., 52, 1870-1894, 2014. (ISI)
  13. Shokri, A.A., Shokri, A., The structure of maximal ideal space of certain Banach algebras of vector-valued functions, Kyungpook Math. J. 5 (2), 159-195. 2014.
  14. Shokri, A.A., Shokri, A., The hybrid Obrechkoff BDF methods for the numerical solution of first order initial value problems, Acta Univ. Apulensis Math. Inform, 38, 23-33, 2014.
  15. Shokri, A., One and two-step new hybrid methods for the numerical solution of first order initial value problems, Acta Universitatis Matthiae Belii, series Mathematics, 45-58, 2014.
  16. Shokri, A., The symmetric P-stable hybrid Obrechkoff methods for the numerical solution of second order IVPs, TWMS J. Pure Appl. Math., 5(1), 28-35, 2014. (ISI-ISC)
  17. Shokri, A., Shokri, A.A., The new class of implicit L-stable hybrid Obrechkoff method for the numerical solution of first order initial value problems, J. Comput. Physics Commun., 184 (3), 529-531, 2013. (ISI)
  18. Shokri, A., Shokri, A.A., Implicit one-step L-stable generalized hybrid methods for the numerical solution of first order initial value problems, Iranian. J. Math. Chem., 4 (2), 201-212, 2013. (ISI-ISC)
  19. Shokri, A., Shokri, A.A., New iterative method for solving of under determined linear equations system, Acta Univ. Apulensis Math. Inform, 189-196, 2012.
  20. Shokri, A.A., Shokri, A., Maximal ideal space of certain α-Lipschitz operator algebras, J. Math. Appl., 35, 83-89, 2012.
  21. Shokri, A., Rahimi Ardabili, M.Y., Shahmorad, S. and Hojjati, G., A new two-step P-stable hybrid Obrechkoff method for the numerical integration of second-order IVPs, J. Comput. Appl. Math.  235 (6), 1706-1712, 2011. (ISI)
  22. Shokri, A.A., Shokri, A., Inversion of regular and singular perturbed matrices, Acta Univ. Apulensis Math. Inform, 99-108, 2011.
  23. Shokri, A., Shokri, A.A., Boundaries and peak points for α-Lipschitz operator algebras, Acta Univ. Apulensis Math. Inform, 317-322, 2011.
  24. Shokri, A.A., Shokri, A., Homomorphisms of certain α-Lipschitz operator algebras, Acta Univ. Apulensis Math. Inform, 9-13, 2011.
  25.  Shokri, A., Rahimi Ardabili, M.Y. and Shokri, A.A., Existence and stability of bounded invertibility of perturbed operators on Banach spaces, Advances in Appl. Math. Analysis, 2(2), 127-130, 2007.

کتاب ها


تشویق ها


تشويق‌ها، جوايز و تقديرها
تاريخ دريافت مقام اعطا كننده محل دريافت علت دريافت عنوان
1382 ریاست دانشگاه دانشگاه زنجان دانشجوی ممتاز بین تمامی دانشجویان کارشناسی ارشد دانشگاه زنجان استعداد درخشان تحصیلات تکمیلی
1385 ریاست دانشگاه دانشگاه تبریز دانشجوی ممتاز دوره دکتری دانشجوی ممتاز
1384 ریاست دانشگاه دانشگاه تبریز برگزیده رتبه اول دکتری استعداد درخشان

عضویت در مجامع علمی و انجمن ها


عضويت در انجمن‌ها و مجامع علمي
سال پایان سال شروع نوع همكاري و سمت محل فعاليت مجمع نام انجمنیا مجمع
84 82   تهران انجمن رياضي ايران
ادامه دارد 89 نماینده تهران انجمن ایرانی تحقیق در عملیات

اختراعات


مقالات ارائه شده


مقالات چاپ شده در مجلات


تحقیقات


سوابق اجرایی


علایق


حل عددی معادله شرودینگر

کارگاه ها


کارگاه نظریه رسته ها- دانشگاه مراغه
کارگاه مبانی آنالیز عددی- دانشگاه مراغه

آموزش


طرح درس


سایر


 
Language
Degree of Proficiency
writing Reading Speaking
Native
Good
Fair Poor Native Good Fair Poor Native Good Fair Poor
English   *       *       *    
Persian *       *       *      
Turkish     *     *     *      

پروژه های تحقیقاتی


  Title of Thesis Name of Student
  •  
  •  
  1.  
A hybrid conjugate gradient method with descent property for unconstrained optimization Mohammad Irandokht University of Maragheh February 2017
  1.  
New step lengths in conjugate gradient methods
 
Fatemeh Ghasemi Tabegh University of Payame Noor Tabriz February 2017
  1.  
A predictor-corrector explicit four-step method with vanished phase-lag and its first,second and third derivatives for the numerical integration of the schrodinger equation Leila Ghorbanian University of Maragheh September 2016
  1.  
A family of explicit linear six-step methods with vanished phase-lag and its first derivative. Zohreh Karami University of Maragheh September 2016
5 Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation Bita Parvizi Milani University of Maragheh February 2016
6 New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger Roghaye Norouzi University of Maragheh September 2015
7 An explicit four-step method with vanished phase-lag and its first and second derivatives Azar Noshadi University of Maragheh April 2015
  1.  
A two-step explicit P-stable method of high phase-lag order for linear periodic IVPs Khadijeh Alizadeh University of Payame Noor Tabriz February 2015
9 Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions Fahimeh Javadi University of Maragheh August 2014
  1.  
A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation Shabnam Mostafavi University of Maragheh August 2014
  1.  
A symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrodinger equation and related IVPs with oscillating solutions Hosein Saadat University of Maragheh
  •  
  1.  
About a numerical method successive interpolations for functional Hammerestein integral equations Maryam Sadigh University of Maragheh October 2014
  1.  
Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs Nader Dorosti University of Payame Noor Tabriz February 2013
 
  1.  
A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems Mohsen Moradi University of Maragheh October 2013
  1.  
An Improved Mixed Conjugate Gradient Method Ebrahim Esmailpour University of Maragheh September 2013
  1.  
Fast enclosure for solutions in underdetermined systems Mohammad Cheraghi University of Maragheh July 2013
  1.  
The Feasibility of the Inverse maximum flow problems and flowmodification techniques in the case of non-feasibility Fatemeh Ahmadkhanpour Islamic Azad University, Hamedan Science and Research Branch September 2013
  1.  
Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrodinger Equation. Hakimeh Yari University of Maragheh October 2013
  1.  
A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems Ali Amjad University of Maragheh October 2012
  1.  
A new linearization method for generalized linear multiplicative programming Shiva Hasanpour Islamic Azad University, Hamedan Science and Research Branch August 2012
  1.  
Determining Type II sensitivity ranges of the fractional assignment problem
 
Nahideh Afifi Bavil Islamic Azad University, Hamedan Science and Research Branch August 2012
  1.  
Class 2+1 hybrid BDF-Like methods for the numerical solutions of ordinary differential equations Farideh Rajabi University of Maragheh In Progress
  1.  
High algebraic order Runge–Kutta type two-step method with vanished phase-lag and its first, second, third, fourth, fifth and sixth derivatives Arezoo Shoghi University of Maragheh In Progress
  1.  
A class of multistep methods based on a super-future points technique for solving IVPs Leila Zafaranloo University of Maragheh In Progress
  1.  
Hybrid BDF methods for the numerical solution of ordinary differential equations Mehri Hemmatifar University of Maragheh In Progress

پروژه های تحقیقاتی خارج از دانشگاه